Monitoring Respiration and Cardiac Activity Using Fiber Bragg Grating-Based Sensor

Seminar Presentation

January 15, 2013
The device consists of a Bragg grating inscribed into a single mode optical fiber and operating on a wavelength of around 1550 nm. The fiber Bragg grating (FBG) is mounted inside a pneumatic cushion to be placed between the backrest of the seat and the back of the monitored person. Vibrations, i.e., dynamic strains transferred to the FBGs involve changes of the instantaneous Bragg wavelength values (proportional to the vibrations). Their detection with the interrogation system (with proper resolution and dynamic characteristics) provides information on breathing activity and heart rate.
The device consists of a Bragg grating inscribed into a single mode optical fiber and operating on a wavelength of around 1550 nm.
The device consists of a Bragg grating inscribed into a single mode optical fiber and operating on a wavelength of around 1550 nm.

The fiber Bragg grating (FBG) is mounted inside a pneumatic cushion to be placed between the backrest of the seat and the back of the monitored person.
The device consists of a Bragg grating inscribed into a single mode optical fiber and operating on a wavelength of around 1550 nm.

The fiber Bragg grating (FBG) is mounted inside a pneumatic cushion to be placed between the backrest of the seat and the back of the monitored person.

Vibrations, i.e., dynamic strains transferred to the FBGs involve changes of the instantaneous Bragg wavelength values (proportional to the vibrations).
The device consists of a Bragg grating inscribed into a single mode optical fiber and operating on a wavelength of around 1550 nm.

The fiber Bragg grating (FBG) is mounted inside a pneumatic cushion to be placed between the backrest of the seat and the back of the monitored person.

Vibrations, i.e., dynamic strains transferred to the FBGs involve changes of the instantaneous Bragg wavelength values (proportional to the vibrations).

Their detection with the interrogation system (with proper resolution and dynamic characteristics) provides information on breathing activity and heart rate.
The device consists of a Bragg grating inscribed into a single mode optical fiber and operating on a wavelength of around 1550 nm.

The fiber Bragg grating (FBG) is mounted inside a pneumatic cushion to be placed between the backrest of the seat and the back of the monitored person.

Vibrations, i.e., dynamic strains transferred to the FBGs involve changes of the instantaneous Bragg wavelength values (proportional to the vibrations).

Their detection with the interrogation system (with proper resolution and dynamic characteristics) provides information on breathing activity and heart rate.
FIBER BRAGG GRATINGS (FBGS)

Fiber Bragg grating is a periodic perturbation of the effective refractive index in the core of an optical fiber. Typically, the perturbation is approximately periodic over a certain length of e.g. a few millimeters or centimeters, and the period is of the order of hundreds of nanometers, or much longer for long-period fiber gratings.

When incident light, I, is launched down the fiber, each plate reflects part of the light beam. Thus, the FBG acts as a stop-band filter.

The reflected beams from each of the plates destructively interfere with each other unless the beams are all in phase. This only occurs only at one wavelength, the Bragg wavelength (central wavelength), which is given by,

$$\lambda = 2n\Lambda$$

The application of strain, pressure, or temperature to an FBG causes a shift in the Bragg wavelength, $\Delta \varepsilon = \Delta (\lambda)/k\varepsilon$.
FIBER BRAGG GRATINGS (FBGS)

- Fiber Bragg grating is a periodic perturbation of the effective refractive index in the core of an optical fiber.
FIBER BRAGG GRATINGS (FBGS)

- Fiber Bragg grating is a periodic perturbation of the effective refractive index in the core of an optical fiber.
- Typically, the perturbation is approximately periodic over a certain length of e.g. a few millimeters or centimeters, and the period is of the order of hundreds of nanometers, or much longer for long-period fiber gratings.
FIBER BRAGG GRATINGS (FBGS)

- Fiber Bragg grating is a periodic perturbation of the effective refractive index in the core of an optical fiber.
- Typically, the perturbation is approximately periodic over a certain length of e.g. a few millimeters or centimeters, and the period is of the order of hundreds of nanometers, or much longer for long-period fiber gratings.
- When incident light, I, is launched down the fiber, each plate reflects part of the light beam. Thus, the FBG acts as a stop-band filter.
FIBER BRAGG GRATINGS (FBGS)

- Fiber Bragg grating is a periodic perturbation of the effective refractive index in the core of an optical fiber.
- Typically, the perturbation is approximately periodic over a certain length of e.g. a few millimeters or centimeters, and the period is of the order of hundreds of nanometers, or much longer for long-period fiber gratings.
- When incident light, \(I \), is launched down the fiber, each plate reflects part of the light beam. Thus, the FBG acts as a stop-band filter.
- The reflected beams from each of the plates destructively interfere with each other unless the beams are all in phase. This only occurs only at one wavelength, the Bragg wavelength (central wavelength), which is given by, \(\lambda = 2n\Lambda \)
FIBER BRAGG GRATINGS (FBGS)

- Fiber Bragg grating is a periodic perturbation of the effective refractive index in the core of an optical fiber.
- Typically, the perturbation is approximately periodic over a certain length of e.g. a few millimeters or centimeters, and the period is of the order of hundreds of nanometers, or much longer for long-period fiber gratings.
- When incident light, I, is launched down the fiber, each plate reflects part of the light beam. Thus, the FBG acts as a stop-band filter.
- The reflected beams from each of the plates destructively interfere with each other unless the beams are all in phase. This only occurs only at one wavelength, the Bragg wavelength (central wavelength), which is given by, $\lambda = 2n\Lambda$.
- The application of strain, pressure, or temperature to an FBG causes a shift in the Bragg wavelength, $\Delta \varepsilon = \Delta\lambda/k_\varepsilon$.

$$\lambda = 2n\Lambda$$
FIBER BRAGG GRATINGS (FBGS)

- Fiber Bragg grating is a periodic perturbation of the effective refractive index in the core of an optical fiber.
- Typically, the perturbation is approximately periodic over a certain length of e.g. a few millimeters or centimeters, and the period is of the order of hundreds of nanometers, or much longer for long-period fiber gratings.
- When incident light, I, is launched down the fiber, each plate reflects part of the light beam. Thus, the FBG acts as a stop-band filter.
- The reflected beams from each of the plates destructively interfere with each other unless the beams are all in phase. This only occurs only at one wavelength, the Bragg wavelength (central wavelength), which is given by, \(\lambda = 2n\Lambda \)
- The application of strain, pressure, or temperature to an FBG causes a shift in the Bragg wavelength, \(\Delta \varepsilon = \Delta (\lambda)/k_{\varepsilon} \)
Figure: FBG acting as stop band filter
Planar Microwave Filters

Micro strip transmission lines (as well as CPW or strip line) can also make good resonators and filters and offer a better compromise in terms of size and performance than lumped element filters.

Precision planar filters are manufactured using a thin-film process.

Higher Q factors can be obtained by using low loss tangent dielectric materials for the substrate such as quartz or sapphire and lower resistance metals such as gold.
Planar Microwave Filters

Micro strip transmission lines (as well as CPW or strip line) can also make good resonators and filters and offer a better compromise in terms of size and performance than lumped element filters.
Planar Microwave Filters

- Micro strip transmission lines (as well as CPW or strip line) can also make good resonators and filters and offer a better compromise in terms of size and performance than lumped element filters.
- Precision planar filters are manufactured using a thin-film process.
Planar Microwave Filters

- Micro strip transmission lines (as well as CPW or strip line) can also make good resonators and filters and offer a better compromise in terms of size and performance than lumped element filters.
- Precision planar filters are manufactured using a thin-film process.
- Higher Q factors can be obtained by using low loss tangent dielectric materials for the substrate such as quartz or sapphire and lower resistance metals such as gold.
Planar Microwave Filters

- Micro strip transmission lines (as well as CPW or strip line) can also make good resonators and filters and offer a better compromise in terms of size and performance than lumped element filters.
- Precision planar filters are manufactured using a thin-film process.
- Higher Q factors can be obtained by using low loss tangent dielectric materials for the substrate such as quartz or sapphire and lower resistance metals such as gold.
Design and Application of Quasi-Elliptic Band-stop Filters

In this paper the design and implementation of a new type of bandstop filter having transmission zeros is presented. Detailed design aspects of 3 and 4 pole bandstop quasi-elliptic filters are discussed, where transmission zeroes are attained by a source-load cross coupling line.
In this paper the design and implementation of a new type of bandstop filter having transmission zeros is presented. Detailed design aspects of 3 and 4 pole bandstop quasi-elliptic filters are discussed, where transmission zeroes are attained by a source-load cross coupling line.

Transmission zeros offer a sharper passband to stopband transition.
In this paper the design and implementation of a new type of bandstop filter having transmission zeros is presented. Detailed design aspects of 3 and 4 pole bandstop quasi-elliptic filters are discussed, where transmission zeroes are attained by a source-load cross coupling line.

Transmission zeros offer a sharper passband to stopband transition.
J inverters are used to provide the coupling.
Method to design microwave bandstop filter based on CPW

Method to design microwave bandstop filter based on CPW

Ref:-N.-B. Zhang and Z.-L. Deng:”Method to design microwave band-stop filter based on CPW”, electronics letters, 31st march 2011, vol. 47 no. 7

- The impedances of coplanar-waveguide (CPW) structures are used to design the filter, and the conformal transformation is utilised to calculate the capacitance of structures in the coplanar-waveguide.
Method to design microwave bandstop filter based on CPW

- The impedances of coplanar-waveguide (CPW) structures are used to design the filter, and the conformal transformation is utilised to calculate the capacitance of structures in the coplanar-waveguide.

- The prototype lowpass filter of Butterworth is used to design a lumped parameter band-stop filter.
The impedances of coplanar-waveguide (CPW) structures are used to design the filter, and the conformal transformation is utilised to calculate the capacitance of structures in the coplanar-waveguide.

- The prototype lowpass filter of Butterworth is used to design a lumped parameter band-stop filter.

- It transforms the lumped circuits to distributed circuits in coplanar-waveguide structures by utilising the Richard transformation and Kuroda rule.
Method to design microwave bandstop filter based on CPW

- Richard Transformation
Method to design microwave bandstop filter based on CPW

- Richard Transformation
 - to synthesize an LC network using open- and short-circuited transmission lines
 - Reactance of inductor
- Susceptance of capacitor
Method to design microwave bandstop filter based on CPW

- Richard Transformation
 - to synthesize an LC network using open- and short-circuited transmission lines
 - Reactance of inductor

- Susceptance of capacitor

- Inductor can be replaced with a short-circuited stub of length BL and characteristic impedance L, while a capacitor can be replaced with an open circuited stub of length BL and characteristic impedance 1/C
Method to design microwave bandstop filter based on CPW

- Richard Transformation
 - to synthesize an LC network using open- and short-circuited transmission lines
 - Reactance of inductor
- Susceptance of capacitor
- Inductor can be replaced with a short-circuited stub of length BL and characteristic impedance L, while a capacitor can be replaced with an open circuited stub of length BL and characteristic impedance $1/C$
Method to design microwave bandstop filter based on CPW

- Kurodas identity
 - It perform any of the following operations.
 - Physically separate transmission line stubs.
 - Transform series stubs into shunt stubs or vice versa.
 - Change impractical characteristic impedance into more realisable one.
Method to design microwave bandstop filter based on CPW
Method to design microwave bandstop filter based on CPW

Next it is necessary to transform the short transmission line to structures in the CPW. The method where the impedances of the CPW are mapped to the impedances of the short transmission line is used to transform the short transmission line circuit to structures in the CPW.
Method to design microwave bandstop filter based on CPW

- Next it is necessary to transform the short transmission line to structures in the CPW. The method where the impedances of the CPW are mapped to the impedances of the short transmission line is used to transform the short transmission line circuit to structures in the CPW.

- In the process of band-stop filter: TEMPAX glass is used as the material of the substrate, while the metal material is aluminium.
Electronically tunable band-stop filter

Electronically tunable band-stop filter

- Tunable bandstop filter are used to cancel high power signals. To be efficient the settling time of the filter has to be much smaller than the one of an YIG tuned filter.
Electronically tunable band-stop filter

- Tunable bandstop filter are used to cancel high power signals. To be efficient the settling time of the filter has to be much smaller than the one of an YIG tuned filter.

- Advantages of this circuit are: very good performance, small dimensions of the hybrid microstrip technology realization and very low cost.
Electronically tunable band-stop filter

- Tunable bandstop filter are used to cancel high power signals. To be efficient the settling time of the filter has to be much smaller than the one of an YIG tuned filter.
- Advantages of this circuit are: very good performance, small dimensions of the hybrid microstrip technology realization and very low cost.
Electronically tunable band-stop filter
Electronically tunable band-stop filter
Electronically tunable band-stop filter
Electronically tunable band-stop filter

- Tuning: 6.5 GHz to 10 GHz

The measured settling time is about 1 μs.

Attenuation < 40 dB
Electronically tunable band-stop filter

- Tuning 6.5 GHz to 10 GHz
- The measured settling time is about 1 us
Electronically tunable band-stop filter

- Tuning 6.5 GHz to 10 GHz
- The measured settling time is about 1 us
- Attenuation < 40 db
Ref:- Taeik Kim, Uisheon Kim, Jaesoon Kwon, and Jaehoon Choi: "Design of a Novel Chipless RFID Tag Using a Simple Bandstop Resonator". Proceedings of Asia-Pacific Microwave Conference 2010, p2264-2267
Design of a Novel Chipless RFID Tag Using a Simple Bandstop Resonator

Ref:- Taeik Kim, Uisheon Kim, Jaesoon Kwon, and Jaehoon Choi: "Design of a Novel Chipless RFID Tag Using a Simple Bandstop Resonator", Proceedings of Asia-Pacific Microwave Conference 2010, p2264-2267

- In this paper a novel chipless RFID tag using a simple bandstop resonator is proposed.
Design of a Novel Chipless RFID Tag Using a Simple Bandstop Resonator

- In this paper a novel chipless RFID tag using a simple band stop resonator is proposed.
- It mainly consist of RFID reader and tag. Tag consist of two antennas and a band stop resonator.
Design of a Novel Chipless RFID Tag Using a Simple Bandstop Resonator

Ref:- Taeik Kim, Uisheon Kim, Jaesoon Kwon, and Jaehoon Choi:"Design of a Novel Chipless RFID Tag Using a Simple Bandstop Resonator", Proceedings of Asia-Pacific Microwave Conference 2010, p2264-2267

- In this paper a novel chipless RFID tag using a simple band stop resonator is proposed.
- It mainly consist of RFID reader and tag. Tag consist of two antennas and a band stop resonator.
- The bandstop resonator attenuates the received interrogation signal at its resonant frequency and delivers the converted signal to the transmitting antenna of a tag. This converted signal has the encoded data. Then it is transmitted by transmitting antenna of tag to receiving antenna of reader, which decode the encoded signal.
Design of a Novel Chipless RFID Tag Using a Simple Bandstop Resonator

Ref:- Taeik Kim, Uisheon Kim, Jaesoon Kwon, and Jaehoon Choi: "Design of a Novel Chipless RFID Tag Using a Simple Bandstop Resonator", Proceedings of Asia-Pacific Microwave Conference 2010, p2264-2267

- In this paper a novel chipless RFID tag using a simple bandstop resonator is proposed.
- It mainly consists of RFID reader and tag. Tag consists of two antennas and a bandstop resonator.
- The bandstop resonator attenuates the received interrogation signal at its resonant frequency and delivers the converted signal to the transmitting antenna of a tag. This converted signal has the encoded data. Then it is transmitted by transmitting antenna of tag to receiving antenna of reader, which decode the encoded signal.
Design of a Novel Chipless RFID Tag Using a Simple Bandstop Resonator
Design of a Novel Chipless RFID Tag Using a Simple Bandstop Resonator
Transmission Line
Planar Bandstop Filter
Planar Bandstop Filter
THANK YOU